
JOURNAL OF APPROXIMATION THEORY 47, 246-254 (1986)

Note on Operators of Szasz-Mirakyan Type

E. OMEY

Economische Hogeschool Sint-Aloysius,
Broekstraat 113, 1000 Brussels, Belgium

Communicated by Oced Shisha

Received February 8, 1985

1. INTRODUCTION

Let C A [0, + 00) denote the set of functions f E C[O, + 00) satisfying a
growth condition of the form If(t)«Aenu (A,n1EIR+). Then, for
f E C A [0, + 00), the well-known Szasz-Mirakyan operator is defined by

• 00 (n;\f (k)
Sn(f,x):=e- llX L -k

'
f -

k-O' n
(x~O).

Replacing the infinite series by a finite partial sum, several authors also
considered the operator

(x~O)

for various choices of N. If, e.g., N = N(n) is a sequence of positive integers
with limN~OO(N(n)/n)= +00, then Grof [5, p.114] proves that

lim Sll,N(f; x) = f(x).
1l~ 00

(1.1 )

On the other hand, if N=[n(x+t5(n))] whcrc limn~X)nI/2t5(n)= +00,
then Lehnhoff [6, Theorem 3] shows that (1.1 ) remains valid for
fE CEO, + 00) satisfying a growth condition of the form If(t)1 «A + Bt2m

(A, BE IR +, n1 EN). In this note we show that Lehnhoffs result remains
valid for all f E CA 0, 00) and all N = N(n, x) satisfying

. N-nx
hm fi = +00.

In case limll~oo((N-nx)/fi)=c, a finite constant depending on x, we
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show that (1.1) no longer holds and should be modified. In this paper we
also consider rates of convergence in (1.1) and in

lim Sn(f; x) = j(x). (1.2)

Under appropriate conditions on j and N we will show that the rate of
convergence in (1.1) and (1.2) is of the order n -1/2. The results we give
complement those of F. Cheng [2]. The method we use in proving our
results depends heavily on the probabilistic interpretation of the operators
Sn(f; x) and SIl ",(f; x), and therefore differs from the methods used by
Lehnhoff or Cheng. It should be clear that our method extends easily to
cover other operators of probabilitic type.

2. MAIN RESULTS

Setting up our probabilistic argument, for x E ~ +, let XI' X 2 , ... , X n be
independent random variables all having the same Poisson (x) distribution,
I.e.,

(k = 0, 1,2,... ).

Now let Sn=XI+X2 +'" +Xn; then Sn has a Poisson (nx) distribution
and we obtain

and

where E(') denotes mathematical expectation and I A denotes the indicator
function of the set A. From probability theory we recall (see, e.g., [3,4] or
any other good book on probability theory)

(2.1) The Strong Law of Large Numbers:

S"
--+X
n

(n -+ (0), almost surely;
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(2.2) Chebyshev's inequality: for every t> 0 and n?:: 1

(2.3) The Central Limit Theorem: for every y E IR

p {S"ji;x ~ y} -+ P{ Z ~ y} = cJJ(y) :=IY

~ e-
z2

/
2 dz

nx -~V2n

(notation: (Sn - nx)/;;; =qg Z (n -+ CXJ );

(2.4) The Berry-Esseen theorem: for all n?:: I

1":.1 {Sn - nx} 1sUPVn P ~ ~y -cJJ(y) ~c(x);
YE~ ynx

(2.5) A large deviation result: if y varies with n such that y = o(n 1
/
6

)

and y -+ 00, then

P{ (SIl- nx)/;;; ~ y} -+ 1
P{Z~ y}

(n -+ CXJ).

Using these results we now prove the following classical result of Szasz [7].

THEOREM 2.1. For every fEe A[0, (0) we have

lim Sn(f; x) = f(x)

uniformly on every interval [Xt>X2J, O~Xl <x2<00.

Proof First note that E(eSS,,) = e-nx+llxe' ~ enxe' so that

(s?:: 0). (2.6)

Now since f E C..j [0, CXJ) we obtain using (2.6)

for some m' E IR +. Also

(2.8)
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for some m" E IR +. Now using the triangle inequality and then Schwarz'
inequality [4, p.152] we obtain: for all 6>0 and x~O,

ISIl(f; x) - f(x)1 ~ E (jJ (~,) -f(x)j)

~E(lf(~")-f(x)1I{IS""-XI~6})

+ E (/I (~")-f(X)1 Ii ISn'"-x: >6})

~ sup If(y) - f(x)1
{ y ~ 0 II Y - xl ~ b;'

Using (2.2) with t = 6n and (2.8) we obtain for all <5 > 0 and x ~ 0 that

ISIl(f;x)-f(x)I~. sup If(Y)-f(x)I+Ae""x ~. (2.9)
:y;>Olly-xl ~6} -J;y.

Since f is uniformly continuous on every closed interval of IR + the desired
result now follows from (2.9). I

To handle SIl,N(f; x) note that since I A ~ 1 we have, as in the proof of
(2.9), that for 6> 0 and x ~ 0,

ISIl,N(f; x) - f(x) P{SIl ~ N}I

~. sup If(Y)-f(x)I+Aem'x.~. (2.10)
: y ;> 0 II y - xl ~ 6 f \I no

Now we prove the following extension of Grof [5, p. 114] and Lehnhoff
[6, p.279].

THEOREM 2.2. (i) If N = N(n, x) is such that

I
, N-nx
1m --~-= + cr)

11 ~x: ,jn
then

lim SIl II/(f; x) = f(x).
n _ 0:,

(2.11 )

(2.12 )

(ii) If(2.11) holds uniformly in [XI>X~], O~Xl<X~<GO, then also
(2.12) holds uniformly in this interval.
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(iii) iflimn~oo((N-nx)/~)=C, a finite constant, then

lim Sn,N(f; x) = I(x) l/> ( ~).
fl-X' V X

(2.13 )

Proof From (2.10) it follows that uniformly in [Xl' x 2 ],

lim ISn,N(f;x)-/(x)P{Sn:(N}I=O.
n ---+ 00

(2.14)

Now if (2.11) holds we have, using (2.3),

. f }' {Sn-nx N-nX}hm PlS,,:(N = hm P c:( C =l/>(oo)=l (2.15)
n~ 00 n~ 00 v nx v nx

and (2.12) follows. If (2.11) holds uniformly in [Xl' x 2 ] also (2.14), and
hence (2.12), holds uniformly in [Xl' x 2 ]. Finally the proof of (iii) follows
from (2.14) and

. { }' {Sn - nx N - nx} ( C) Ihm P S,,:( N = hm P r-:( ----r=- = l/> r;.'
n ~ 00 n ~ 00 ..J nx ..J nx 'v x

Our next result is devoted to the rate of convergence in (1.2). For a fixed
x>°and b > °we will assume that IE CA [0, co) and that

for It-xl :(b, t~O. (2.16 )

Here C(x, b) denotes some constant depending on x and b. Note that from
(2.16) and/ECA[O, co) we have

I/(t) - l(x)1 :( C(x, b) em! It - xl, t~O (2.17 )

for some constants C and m>O. Also note that (2.16) holds ifj'(x) exists.
Now we prove

THEOREM 2.3. ifIE C A [0, co) and if (2.16) holds, then

sup~ ISn(f; x) - l(x)1 < co.
n?:;l

Furthermore, if j'(x) exists, then

lim ~(Sn(f;x)-/(x))=O.
n ~ 00
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Proof From (2.17), Schwarz' inequality, and (2.6) it follows that

j;J ISn(f; x) - f(x)1 ~ j;J E It (~,) -f(X)1

~ C(X, 15) E (em(S,,/n) ISn --::-X11
\ vi nx /

J (S,,-nX\2 ,
"m'x E ,- I =C"emx

~ C e y/nx /

251

and the first result follows.
Next, suppose f'(x) exists; since S,z/n - x almost surely (n - (0), we

have

z" :=f(Sj~) - f(x) f'(x) ---+ 0 (n ---+ (0), almost surely. (2.18)
Sn n-x

Now we have

Using (2.18), (2.3), and [1, Theorem 4.1J we obtain

(2.19 )

Now from (2.17) and Schwarz' inequality we see that for m > 0,

E (!f(S,,;n) -f(x) 1

m

) ~ C"em'x J~ (Sn --::-X)2m.
~ 'J'1X

Using the boundedness of E( (Sn - nx)/';;;; )2m (see, e.g., Lehnhoff [6,
Lemma 4J) we obtain

sup E(lf(Sn/n};!(x)ll
m

) < 00.

,,;>1 yx/n
(2.20)

But then (2.19) and (2.20) together with [1, Theorem 5.4J imply that

(n ---+ w),

which proves the result. I

640/47/3-6
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Remark. The example f(t) = It - xl shows that the first result of
Theorem 2.3 is best possible. See also Cheng [2, p.229].

Using the same method as in the proof of Theorem 2.3 we also have the
following extension of lhe theorem.

THEOREM 2.4. If fEe A [0, (0) and if x> 0, 6 > 0, kEN are such that
f(r)(x) exists for r = 1,2,..., k and such that

I
k (t - x)' If(t)-f(x)-I . - f(r)(x) ~C(x,6)lt-xlk+1

r'r= 1 .

for t~O, It-xl ~(j, then

(k I) ' I . ~ E(Snln-x)' () I
~~\ n + I~ Sn(f; x) - f(x) - r':2 r! f r (x) < 00.

Furthermore, if f(k + 1 )(x) exists, then

(

k E(S In - x)' )
}~~ n(k+ 1);2 Sn(f; x) - f(x) - r~2 n r! . fir)(X)

= f(k+ 1 )(X) X(k + 2);2E(Zk+ I).

Remarks. 1. In view of the example f(t) = e l
, the result of Theorem 2.4

is best possible.

2. The constants rk := E(Zk + I) can be calculated more explicitly as

r2k=0

(2k+ I)!
r2k+l= k!2k+1 (k = 0, 1,... ).

In our next theorem we obtain a rate of convergence result for the
operators Sn.N'

THEOREM 2.5. If (2.14) holds and if

. 'fN-nx 0hmm >
n~oo .filn(n)

then

sup.fi ISn.N(f; x) - f(x)1 < 00.
n~l

(2.21 )

(2.22)
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Furthermore, if f'(x) exists, if (2.21) holds, and if

N -nx . 16
--,-=o(n" )

yin

then

lim fi(S".v(f;x)-f(x))=O.
fl----loCIJ

Proof To prove (2.22) note that

253

(2.23)

(2.24\

(2.25 )

,-
Now let y = (N - nx )/~ IlX; then y -> cr., and y> c In(n) for all n large. But
then (2.4) implies that

J;; P{ S" > N} ::; C(x) + vi~( 1- cP( y) ,.

Using 1 - cP( y) - C(e - Y'/y) (y -> oc) and (2.21) we obtain that

sup fi P{S" > N} < ex.
11?1

(2.26)

The inequality (2.22) now follows from (2.25), (2.26), and Theorem 2.3.
To prove (2.24) note that

v/~ (S".N(f; x)- fix))

=j~ (S,,(f;x)- fix)) j~ E(f(S,,) r,s>.v,). (2.27)
v v III ", 'J

Using Schwarz' inequality and (2.7), we obtain

Now with y as before and using (2.5) we obtain

(n -> x).

Using p.21) and l-<P(y)-C(e- v '/y) (y->xl it follows that

nP{S,,>N} ->0 (n -> CJJ ). (2.28)

Now (2.24) follows from (2.27), (2.28), and Theorem 2.3. I
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